PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent
نویسندگان
چکیده
Stochastic Dual Coordinate Descent (DCD) is one of the most efficient ways to solve the family of `2-regularized empirical risk minimization problems, including linear SVM, logistic regression, and many others. The vanilla implementation of DCD is quite slow; however, by maintaining primal variables while updating dual variables, the time complexity of DCD can be significantly reduced. Such a strategy forms the core algorithm in the widely-used LIBLINEAR package. In this paper, we parallelize the DCD algorithms in LIBLINEAR. In recent research, several synchronized parallel DCD algorithms have been proposed, however, they fail to achieve good speedup in the shared memory multi-core setting. In this paper, we propose a family of parallel asynchronous stochastic dual coordinate descent algorithms (PASSCoDe). Each thread repeatedly selects a random dual variable and conducts coordinate updates using the primal variables that are stored in the shared memory. We analyze the convergence properties of DCD when different locking/atomic mechanisms are applied. For implementation with atomic operations, we show linear convergence under mild conditions. For implementation without any atomic operations or locking, we present a novel error analysis for PASSCoDe under the multi-core environment, showing that the converged solution is the exact solution for a primal problem with a perturbed regularizer. Experimental results show that our methods are much faster than previous parallel coordinate descent solvers.
منابع مشابه
Asynchronous Decentralized Parallel Stochastic Gradient Descent
Recent work shows that decentralized parallel stochastic gradient decent (D-PSGD) can outperform its centralized counterpart both theoretically and practically. While asynchronous parallelism is a powerful technology to improve the efficiency of parallelism in distributed machine learning platforms and has been widely used in many popular machine learning softwares and solvers based on centrali...
متن کاملFast Asynchronous Parallel Stochastic Gradient Decent
Stochastic gradient descent (SGD) and its variants have become more and more popular in machine learning due to their efficiency and effectiveness. To handle large-scale problems, researchers have recently proposed several parallel SGD methods for multicore systems. However, existing parallel SGD methods cannot achieve satisfactory performance in real applications. In this paper, we propose a f...
متن کاملAsynchronous Doubly Stochastic Proximal Optimization with Variance Reduction
In the big data era, both of the sample size and dimension could be huge at the same time. Asynchronous parallel technology was recently proposed to handle the big data. Specifically, asynchronous stochastic (variance reduction) gradient descent algorithms were recently proposed to scale the sample size, and asynchronous stochastic coordinate descent algorithms were proposed to scale the dimens...
متن کاملAsynchronous Stochastic Gradient Descent with Variance Reduction for Non-Convex Optimization
We provide the first theoretical analysis on the convergence rate of the asynchronous stochastic variance reduced gradient (SVRG) descent algorithm on nonconvex optimization. Recent studies have shown that the asynchronous stochastic gradient descent (SGD) based algorithms with variance reduction converge with a linear convergent rate on convex problems. However, there is no work to analyze asy...
متن کاملParallel Asynchronous Stochastic Variance Reduction for Nonconvex Optimization
Nowadays, asynchronous parallel algorithms have received much attention in the optimization field due to the crucial demands for modern large-scale optimization problems. However, most asynchronous algorithms focus on convex problems. Analysis on nonconvex problems is lacking. For the Asynchronous Stochastic Descent (ASGD) algorithm, the best result from (Lian et al., 2015) can only achieve an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015